The Road to Immunity During COVID-19: Developing & Distributing a Vaccine

NAM-APHA COVID-19 Conversations Webinar
10 June 2020

Richard Hatchett
CEO, CEPI
Our mission

CEPI accelerates development of vaccines against emerging infectious diseases and enables equitable access to these vaccines for affected populations during outbreaks.
Disease X: COVID–19

As of 9 June

7.1m Confirmed cases

406,807 Deaths

188 Countries

The spread of COVID-19 has become a humanitarian and economic crisis, unprecedented in modern times.
Global Snapshot of COVID-19 Vaccine Development
Covid-19 vaccine R&D landscape

- **Exploratory**: project has not started with in-vivo testing
- **Preclinical**: project started to test in-vivo / manufacture CTM but not yet started with testing on human
- **Phase I**: safety and immunogenicity; **Phase IIa**: Safety and efficacy and dose schedule; **Phase I/II**: combine of Phase I and IIa. Start is defined as first subject dosed
- **Unconfirmed**: the development status cannot be confirmed using available internal and publicly available information
Current CEPI COVID-19 vaccine portfolio consists of 9 projects:

<table>
<thead>
<tr>
<th>Inovio</th>
<th>University of Queensland / CSL</th>
<th>CureVac</th>
<th>Moderna</th>
<th>Clover BioPharma</th>
<th>Merck / Themis</th>
<th>Novavax</th>
<th>University of Hong Kong</th>
<th>AZ / Univ. Oxford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Platform</td>
<td>Antigen / Adjuvant</td>
<td>Current phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>DNA</td>
<td>Full-length S protein</td>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Protein</td>
<td>Full-length S protein / MF59 or AS03 or CPG1018</td>
<td>Preclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>RNA</td>
<td>Full-length S protein</td>
<td>Preclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>mRNA</td>
<td>Full-length S protein</td>
<td>Phase I1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Protein</td>
<td>Full-length S protein / AS03 or CPG1018</td>
<td>Preclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA/Austria</td>
<td>Protein</td>
<td>Full-length S protein</td>
<td>Preclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Protein</td>
<td>Full-length S protein / saponin-based Matrix-M</td>
<td>Preclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Viral Vector</td>
<td>Receptor Binding Domain / AS03</td>
<td>Preclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Viral Vector</td>
<td>Full-length S protein</td>
<td>Phase I/II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjuvants
- Dynavax
- Seqirus

Speed

Scale

Access
11 Covid-19 vaccine candidates in clinical trials

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Vaccine characteristics</th>
<th>Current stage</th>
<th>#Sites/Location</th>
<th>Lead Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad5-nCoV</td>
<td>Adenovirus type 5 vector that expresses S protein</td>
<td>Phase I/II</td>
<td>? sites / China</td>
<td>Cansino</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Inactivated Novel Coronavirus Pneumonia vaccine (Vero cells)</td>
<td>Phase I/II</td>
<td>? sites / China</td>
<td>Wuhan Institute of biological products</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Inactivated novel coronavirus (2019-CoV) vaccine (Vero cells)</td>
<td>Phase I/II</td>
<td>1 site / China</td>
<td>Beijing Institute of Biotechnology</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Inactivated SARS-CoV-2 inactivated vaccine</td>
<td>Phase I/II</td>
<td>1 site / China</td>
<td>Sinovac Biotech</td>
</tr>
<tr>
<td>ChAdOx1</td>
<td>ChAdOx1 vector that expresses S protein</td>
<td>Phase I/II</td>
<td>6 sites / UK</td>
<td>AZ / Oxford</td>
</tr>
<tr>
<td>nCoV-19</td>
<td>DCs modified with lentiviral vector expressing synthetic minigene based on domains of</td>
<td>Phase I/II</td>
<td>3 sites / China</td>
<td>Shenzhen GIMI</td>
</tr>
<tr>
<td>LV-SMENP-DC</td>
<td>selected viral proteins; administered with antigen-specific CTLs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA-BNT162</td>
<td>mRNA NRM / SAM constructs with LNP</td>
<td>Phase I/II</td>
<td>1 site / Germany</td>
<td>Pfizer; BioNTech</td>
</tr>
<tr>
<td>NVX-CoV2373</td>
<td>stable, prefusion protein, includes Matrix-M™ adjuvant</td>
<td>Phase I/II</td>
<td>7 sites / US</td>
<td>Novavax</td>
</tr>
<tr>
<td>Pathogen-specific aAPC</td>
<td>aAPCs modified with lentiviral vector expressing synthetic minigene based on domains of selected viral proteins</td>
<td>Phase I</td>
<td>2 sites / Australia</td>
<td>Novavax</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>LNP-encapsulated mRNA vaccine encoding S protein</td>
<td>Phase I/II</td>
<td>10 sites / USA</td>
<td>Moderna Therapeutics</td>
</tr>
<tr>
<td>INO-4800</td>
<td>DNA plasmid encoding S protein delivered by electroporation</td>
<td>Phase I</td>
<td>2 sites / USA</td>
<td>Inovio Pharmaceuticals</td>
</tr>
</tbody>
</table>
Clinical development is proceeding at unprecedented speed

- 11 January 2020 - genetic sequence of SARS-CoV-2 published
- 11 May 2020 – Moderna mRNA-1273 enters Phase II
- 1 April 2020 – first Covid-19 vaccine candidate reported to enter Phase II (Cansino Ad5-nCoV)
- 3 June 2020 – 11 Covid-19 vaccine candidates in clinical development
- Several developers have indicated targets for doses to be available from late 2020, early 2021
- 8 April 2020 – 5 Covid-19 vaccine candidates in clinical development
- 16 March 2020 – first Covid-19 vaccine candidate enters Phase I (Moderna mRNA-1273)
- 22 May 2020 – AstraZeneca announce opening of recruitment for Phase II / III trial

Compared with:
- *Ebola* – 5 years
- *Pandemic Influenza* – 7 years
- *HBV* – 16 years
>60 vaccines will enter clinical development by the end of 2020
Speed requires a paradigm shift

Traditional paradigm
5 – 10+ years

- Target ID, development partner selection, and pre clinical
 6-36 months
- Phase I
 6-24 months
- Phase IIa
 6-12 months
- Phase IIb
 6-12 months
- Phase III
 12-36 months
- Licensure
 3-18 months

Outbreak paradigm
12 – 18 months

- Target ID, development partner selection, and pre clinical
 4-8 months
- Go/no-go decision to invest in candidates
- Clinical development
 Early stage
 3-4 months
 Late stage
 6-8 months
 First in human (PhI)
 Late Stage (PhII) development
 n=10s to n=100s
 Advanced development
 n=100s to n=1000s
 Final stage production / (Emergency authorization)

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057755
COVID-19 vaccines are being developed on many platforms

<table>
<thead>
<tr>
<th>Technology platform</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuated / inactivated</td>
<td>Relative ease of development; if replicating, may lead to longer lasting response</td>
<td>If non-replicating, requires more frequent boost than live vaccine; generally requires BSL3 / BSL4 manufacturing capability</td>
</tr>
<tr>
<td>Viral vector</td>
<td>High antibody and T-cell response; ability to select optimal antigen; possible for single-dose protection; replicating virus can use a lower dose; higher productivity in manufacturing; reproducible for different pathogens</td>
<td>Relatively long development time to make master virus/release production starting materials; may not be appropriate for immune-compromised patients; may elicit immune response against vector rather than antigen; stability may require low temperature storage or lyophilization</td>
</tr>
<tr>
<td>Recombinant protein / subunit</td>
<td>Ability to select optimal antigen; existing manufacturing capacity / productive platforms / many licensed products with the technology; allows for relatively easy dose optimization</td>
<td>Generally require adjuvant; often process development needed for new targets (platforms that don't change are being developed)</td>
</tr>
<tr>
<td>Virus-like particles</td>
<td>Safe; ability to select optimal antigen; can display antigens from multiple strains; more immunogenic than soluble protein</td>
<td>Likely to require adjuvant</td>
</tr>
<tr>
<td>DNA</td>
<td>Scalable manufacturing process for bulk drug; fast response time to new disease target; flexible for a variety of disease targets (bacterial, viral)</td>
<td>Requires a device that is currently limited in supply and high in cost for LMIC</td>
</tr>
<tr>
<td>RNA</td>
<td>Potential fast response to new disease target; flexible for a variety of disease targets (bacterial, viral);</td>
<td>Delivery requires specialist delivery systems (e.g. LNPs); new technology, so capacity needs to be created (limited existing production capabilities); stability may require low temperature storage or lyophilisation</td>
</tr>
</tbody>
</table>
Concluding thoughts and open questions

• There is no scenario in which vaccines will not be in short supply in 2021
 o The careful management of COVID-19 vaccines as a scarce resource will be essential if we are to end the acute phase of the pandemic and achieve equitable access.

• Many of the Covid-19 vaccine development approaches are high-risk

• Many questions are likely to remain and require longer term follow up, e.g.:
 o Long-term effectiveness / durability of response
 o Long-term safety follow-up
 o Potential for differential responses due to population heterogeneity
 o Breadth of protection against virus mutation or genetic drift / shift

• The first vaccines to market may not be optimal and it will be important to maintain a comprehensive strategic approach for the long term – built on an evolving understanding of disease epidemiology and vaccine effectiveness